Белки и их функции, свойства в организме

Виды белков, их функции и структура

Белки и их функции, свойства в организме

По теории Опарина-Холдейна жизнь на нашей планете зародилась из коацерватной капельки. Она же представляла собой молекулу белка.

То есть следует вывод, что именно эти химические соединения – основа всего живого, что существует сегодня.

Но что же собой представляют белковые структуры? Какую роль сегодня они играют в организме и жизни людей? Какие виды белков существуют? Попробуем разобраться.

Белки: общее понятие

С точки зрения химического строения, молекула рассматриваемого вещества представляет собой последовательность аминокислот, соединенных между собой пептидными связями.

Каждая аминокислота имеет две функциональные группы:

  • карбоксильную -СООН;
  • амино-группу -NH2.

Именно между ними и происходит формирование связи в разных молекулах. Таким образом, пептидная связь имеет вид -СО-NH. Молекула белка может содержать сотни и тысячи таких группировок, это будет зависеть от конкретного вещества. Виды белков очень разнообразны.

Среди них есть и те, которые содержат незаменимые для организма аминокислоты, а значит должны поступать в организм с пищевыми продуктами. Существуют такие разновидности, которые выполняют важные функции в мембране клетки и ее цитоплазме. Также выделяют катализаторы биологической природы – ферменты, которые тоже являются белковыми молекулами.

Они широко используются и в быту человека, а не только участвуют в биохимических процессах живых существ.

Молекулярная масса рассматриваемых соединений может колебаться от нескольких десятков до миллионов. Ведь количество мономерных звеньев в большой полипептидной цепи неограниченно и зависит от типа конкретного вещества.

Белок в чистом виде, в его нативной конформации, можно увидеть при рассмотрении куриного яйца в сыром виде. Светло-желтая, прозрачная густая коллоидная масса, внутри которой располагается желток – это и есть искомое вещество.

То же самое сказать об обезжиренном твороге, Данный продукт также является практически чистым белком в его натуральном виде.

Однако не все рассматриваемые соединения имеют одинаковое пространственное строение. Всего выделяют четыре организации молекулы. Виды структур белка определяют его свойства и говорят о сложности строения. Также известно, что более пространственно запутанные молекулы подвергаются тщательной переработке в организме человека и животных.

Виды структур белка

Всего их выделяют четыре. Рассмотрим, что собой представляет каждая из них.

  1. Первичная. Представляет собой обычную линейную последовательность аминокислот, соединенных пептидными связями. Никаких пространственных закручиваний, спирализации нет. Количество входящих в полипептид звеньев может доходить до нескольких тысяч. Виды белков с подобной структурой – глицилаланин, инсулин, гистоны, эластин и другие.
  2. Вторичная. Представляет собой две полипептидные цепи, которые скручиваются в виде спирали и ориентируются по направлению друг к другу образованными витками. При этом между ними возникают водородные связи, удерживающие их вместе. Так формируется единая белковая молекула. Виды белков такого типа следующие: лизоцим, пепсин и другие.
  3. Третичная конформация. Представляет собой плотно упакованную и компактно собранную в клубок вторичную структуру. Здесь появляются другие типы взаимодействия, помимо водородных связей – это и ван-дер-ваальсово взаимодействие и силы электростатического притяжения, гидрофильно-гидрофобный контакт. Примеры структур – альбумин, фиброин, белок шелка и прочие.
  4. Четвертичная. Самая сложная структура, представляющая собой несколько полипептидных цепей, скрученных в спираль, свернутых в клубок и объединенных все вместе в глобулу. Такие примеры, как инсулин, ферритин, гемоглобин, коллаген, иллюстрируют собой как раз такую конформацию белков.

Если рассматривать все приведенные структуры молекул детально с химической точки зрения, то анализ займет много времени. Ведь на самом деле чем выше конфигурация, тем сложнее и запутаннее ее строение, тем больше типов взаимодействий наблюдается в молекуле.

Денатурация белковых молекул

Одним из самых важных химических свойств полипептидов является их способность разрушаться под влиянием определенных условий или химических агентов. Так, например, широко распространены разные виды денатурации белков.

Что это за процесс? Он заключается в разрушении нативной структуры белка. То есть если изначально молекула имела третичную структуру, то после действия специальными агентами она разрушится. Однако при этом последовательность аминокислотных остатков остается в молекуле неизменной.

Денатурированные белки быстро теряют свои физические и химические свойства.

Какие реагенты способны привести к процессу разрушения конформации? Таких несколько.

  1. Температура. При нагревании происходит постепенное разрушение четвертичной, третичной, вторичной структуры молекулы. Зрительно это можно наблюдать, например, при жарке обычного куриного яйца. Образующийся “белок” – это первичная структура полипептида альбумина, который был в сыром продукте.
  2. Радиация.
  3. Действие сильными химическими агентами: кислотами, щелочами, солями тяжелых металлов, растворителями (например, спиртами, эфирами, бензолом и прочими).

Данный процесс иногда еще называют плавлением молекулы. Виды денатурации белков зависят от агента, при действии которого она наступила. При этом в некоторых случаях имеет место процесс, обратный рассмотренному. Это ренатурация.

Не все белки способны восстанавливать обратно свою структуру, однако значительная их часть может это делать.

Так, химики из Австралии и Америки осуществили ренатурацию вареного куриного яйца при помощи некоторых реагентов и способа центрифугирования.

Этот процесс имеет значение для живых организмов при синтезе полипептидных цепочек рибосомами и рРНК в клетках.

Гидролиз белковой молекулы

Наравне с денатурацией, для белков характерно еще одно химическое свойство – гидролиз. Это также разрушение нативной конформации, но не до первичной структуры, а полностью до отдельных аминокислот. Важная часть пищеварения – гидролиз белка. Виды гидролиза полипептидов следующие.

  1. Химический. Основан на действии кислот или щелочей.
  2. Биологический или ферментативный.

Однако суть процесса остается неизменной и не зависит от того, какие виды гидролиза белков имеют место быть. В результате образуются аминокислоты, которые транспортируются по всем клеткам, органам и тканям. Дальнейшее их преобразование заключается в участии синтеза новых полипептидов, уже тех, что необходимы конкретному организму.

В промышленности процесс гидролиза белковых молекул используют как раз для получения нужных аминокислот.

Функции белков в организме

Различные виды белков, углеводов, жиров являются жизненно необходимыми компонентами для нормальной жизнедеятельности любой клетки. А значит и всего организма в целом. Поэтому во многом их роль объясняется высокой степенью значимости и повсеместной распространенности внутри живых существ. Можно выделить несколько основных функций полипептидных молекул.

  1. Каталитическая. Ее осуществляют ферменты, которые имеют белковую природу строения. О них скажем позже.
  2. Структурная. Виды белков и их функции в организме прежде всего влияют на структуру самой клетки, ее форму. Кроме того, полипептиды, выполняющие эту роль, образуют волосы, ногти, раковины моллюсков, перья птиц. Они же являются определенной арматурой в теле клетки. Хрящи состоят также из этих видов белков. Примеры: тубулин, кератин, актин и другие.
  3. Регуляторная. Данная функция проявляется в участии полипептидов в таких процессах, как: транскрипция, трансляция, клеточный цикл, сплайсинг, считывание мРНК и прочих. Во всех них они играют важную роль регулировщика.
  4. Сигнальная. Данную функцию выполняют белки, находящиеся на мембране клеток. Они передают различные сигналы от одной единицы к другой, и это приводит к сообщению тканей между собой. Примеры: цитокины, инсулин, факторы роста и прочие.
  5. Транспортная. Некоторые виды белков и их функции, которые они выполняют, являются просто жизненно необходимыми. Так происходит, например, с белком гемоглобином. Он осуществляет транспорт кислорода от клетки к клетке в составе крови. Для человека он незаменим.
  6. Запасная или резервная. Такие полипептиды накапливаются в растениях и яйцеклетках животных как источник дополнительного питания и энергии. Пример – глобулины.
  7. Двигательная. Очень важная функция, особенно для простейших организмов и бактерий. Ведь они способны передвигаться только при помощи жгутиков или ресничек. А эти органоиды по своей природе не что иное, как белки. Примеры таких полипептидов следующие: миозин, актин, кинезин и прочие.

Очевидно, что функции белков в организме человека и других живых существ очень многочисленны и немаловажны. Это еще раз подтверждает, что без рассматриваемых нами соединений невозможна жизнь на нашей планете.

Защитная функция белков

Полипептиды могут защищать от разных воздействий: химических, физических, биологических. Например, если организму угрожает опасность в виде вируса или бактерии, имеющих чужеродную природу, то иммуноглобулины (антитела) вступают с ними “в бой”, выполняя защитную роль.

Если говорить о физических воздействиях, то здесь большую роль играют, например, фибрин и фибриноген, которые участвуют в свертывании крови.

Белки пищевые

Виды пищевого белка следующие:

  • полноценные – те, что содержат все необходимые для организма аминокислоты;
  • неполноценные – те, в которых находится неполный аминокислотный состав.

Однако для организма человека важны и те и другие. Особенно первая группа.

Каждый человек, особенно в периоды интенсивного развития (детский и юношеский возраст) и полового созревания должен поддерживать постоянный уровень протеинов в себе.

Ведь мы уже рассмотрели функции, которые выполняют эти удивительные молекулы, и знаем, что практически ни один процесс, ни одна биохимическая реакция внутри нас не обходится без участия полипептидов.

Именно поэтому необходимо каждый день потреблять суточную норму протеинов, которые содержатся в следующих продуктах:

  • яйцо;
  • молоко;
  • творог;
  • мясо и рыба;
  • бобы;
  • соя;
  • фасоль;
  • арахис;
  • пшеница;
  • овес;
  • чечевица и прочие.

Если потреблять в день 0,6 г полипептида на один кг веса, то у человека никогда не будет недостатка в этих соединениях. Если же длительное время организм недополучает необходимых белков, то наступает заболевание, имеющее название аминокислотного голодания. Это приводит к сильному нарушению обмена веществ и, как следствие, многим другим недугам.

Белки в клетке

Внутри самой маленькой структурной единицы всего живого – клетки – также находятся белки. Причем выполняют они там практически все вышеперечисленные свои функции.

В первую очередь формируют цитоскелет клетки, состоящий из микротрубочек, микрофиламентов. Он служит для поддержания формы, а также для транспорта внутри между органоидами.

По белковым молекулам, как по каналам или рельсам, движутся различные ионы, соединения.

Немаловажна роль белков, погруженных в мембрану и находящихся на ее поверхности. Здесь они и рецепторные, и сигнальные функции выполняют, принимают участие в строительстве самой мембраны. Стоят на страже, а значит играют защитную роль. Какие виды белков в клетке можно отнести к этой группе? Примеров множество, приведем несколько.
  1. Актин и миозин.
  2. Эластин.
  3. Кератин.
  4. Коллаген.
  5. Тубулин.
  6. Гемоглобин.
  7. Инсулин.
  8. Транскобаламин.
  9. Трансферрин.
  10. Альбумин.

Всего насчитывается несколько сотен различных видов протеинов, которые постоянно передвигаются внутри каждой клетки.

Виды белков в организме

Их, конечно же, огромное разнообразие. Если же попытаться как-то разделить все существующие протеины на группы, то может получиться примерно такая классификация.

  1. Глобулярные белки. Это такие, которые представлены третичной структурой, то есть плотно упакованной глобулой. Примеры таких структур следующие: иммуноглобулины, значительная часть ферментов, многие гормоны.
  2. Фибриллярные белки. Представляют собой строго упорядоченные нити, имеющие правильную пространственную симметрию. К данной группе относятся протеины с первичной и вторичной структурой. Например, кератин, коллаген, тропомиозин, фибриноген.

Вообще, можно взять за основу множество признаков для классификации белков, находящихся в организме. Единой пока не существует.

Ферменты

Биологические катализаторы белковой природы, которые значительно ускоряют все происходящие биохимические процессы. Нормальный обмен веществ просто невозможен без этих соединений. Все процессы синтеза и распада, сборка молекул и их репликация, трансляция и транскрипция и прочие осуществляются под воздействием специфического вида фермента. Примерами этих молекул могут служить:

  • оксидоредуктазы;
  • трансферазы;
  • каталазы;
  • гидролазы;
  • изомеразы;
  • лиазы и прочие.

Сегодня ферменты используются и в быту. Так, при производстве стиральных порошков часто используют так называемые энзимы – это и есть биологические катализаторы. Они улучшают качество стирки при соблюдении указанного температурного режима. Легко связываются с частицами грязи и выводят их с поверхности тканей.

Однако из-за белковой природы энзимы не переносят слишком горячую воду или соседство с щелочными или кислотными препаратами. Ведь в этом случае произойдет процесс денатурации.

Источник: https://FB.ru/article/184110/vidyi-belkov-ih-funktsii-i-struktura

Свойства и функции белков

Белки и их функции, свойства в организме

Белки — органические вещества с большой молекулярной массой, основными компонентами которых являются альфа аминокислоты, связанные между собой цепочкой пептидных связей.

Выявлено множество свойств и функций белков, в зависимости от среды обитания и самих живых организмов, в которых они обитают.

Физико-химические свойства белков также различны, что объясняется разным составом аминокислот.

Особенности белков и их химические свойства

Особенно интересны химические свойства белков, так как некоторые из них совершенно противоположны друг-другу. Одни белки легко растворяются в воде, другие же, напротив, не растворяются вообще.

Существуют белки, на которые не действуют разнообразные химические агенты, соответственно есть и такие, которым достаточно самого малого воздействия, вроде, лёгкого прикосновения или небольшого освещения, чтобы измениться.

Некоторые разновидности в облике нитей, длинною в сотню нанометров, а встречаются напоминающие шар, имеющий в диаметре около шести нанометров. Однако, вне зависимости от своих размеров и форм свойства белка и его функции остаются неизменными.

Белок кератина, например, имеет твёрдость стали и способствует образованию защитных механизмов у животных, таких, как копыта, когти, рога, панцирь, волосяной покров и перья.

В мышечный состав включены состоящие из нитевидных молекул белки, обеспечивающие двигательную активность клеток благодаря своей эластичности и способности удлиняться или сужаться. Для перемещения веществ по организму необходимы представители с небольшими, круглыми молекулами. Быстрорастворимые, с легко изменяющейся структурой, белки принимают и передают в клетку сигналы, которые получают из окружающей среды.

Как происходит денатурации белка

Для того чтобы свойства и функции белка изменились, необходима денатурация. Что же это такое? Денатурация – это изменение изначальной структуры белка.

Изменить ее можно, воздействуя на белок физическими или химическими факторами, вроде больших температур, механических воздействий или при помощи некоторых химических веществ.

Наглядным примером денатурации является сваренное яйцо: из жидкого оно превращается в плотное. Белок перестаёт быть растворимыми и облегчает пищеварительными ферментам своё воздействие на него.

Однако, этот процесс обратим в том случае, если конструкция белка устанавливается особым порядком последовательности аминокарбоновых кислот в полипептидной цепи и его составом. В этом случае уже развёрнутая полипептидная цепь способна в произвольном порядке закрутиться спиралью и уложиться в единую. Эта способность основывается на системе раздражимости, свойственной всему живому.

Белки: функции и свойства

Первостепенная задача белков – строительная. Именно из них составлены мембраны клеток и ее органоидов, стенки системы кровоснабжения организма, сухожилий, хрящей и т.д.

Второй, но не менее важной задачей, является каталитическая. Ферменты являются катализаторами клетки, их активность очень высока. Благодаря им, химические реакции внутри организма ускоряются в разы. Белки являются ферментами по своему химическому составу. Именно они катализируют самые мизерные молекулы, используя для ускорения лишь активный центр белка.

Такая реакция возможна лишь при близком нахождении молекул и геометрически верных пропорций конформаций вещества и активного центра белка. При процессе денатурации ускорение активности фермента пропадает по причине того, что конструкция активного центра расстраивается. Для любой химической реакции предусмотрен организмом определённый фермент — катализатор.

Следующие функции белка — сигнальная и защитная. Сигнальная функция отвечает за то, чтобы молекулы белков, входящие во внешнюю мембрану клетки и имеющие способность менять свою структуру под воздействием внешних раздражителей, принимали сигналы из окружающей среды и передавали в клетку команды. Защитная — за обезвреживание инородных клеток и веществ, вводимых в организм.

Помимо этого, белки обладают двигательной и транспортной функциями. За двигательные функции отвечают сократительные ферменты, демонстрирующие жизненную активность организма.

Любое движение, от мерцания ресничек или движения жгутиков у простейших, вплоть до сокращения мышц у животных или человека, осуществляется при помощи актина и миозина. Транспортная функция отвечает за присоединение разнообразных веществ и перемещение их из разных клеточных мест в другие.

К примеру, гемоглобин – белок, содержащийся в крови, отвечает за присоединение кислорода и доставку его ко всем тканям и органам организма.

И последняя функция – энергетическая. В клетке происходит распад белков на аминокислоты, одна часть которых обеспечивает синтез белков, а другая тщательно расщепляется для высвобождения энергии.

Источник: https://muscleoriginal.com/svojstva-i-funkcii-belkov/

Функции белков в организме человека

Белки и их функции, свойства в организме

Что мы знаем о белках, которые ежедневно употребляем вместе с пищей? Большинство людей знакомы с ними, как с материалом для строительства мышц. Но это не самая главная их задача. Для чего еще нам нужен белок и почему мы в нем так сильно нуждаемся? Давайте рассмотрим все функции белков в организме человека и их важность в нашем питании.

Я уже заводил белковую тему на блоге «Веди ЗОЖ» Тогда мы говорили о том, вреден протеин или нет. Тематика спортивного питания сейчас очень популярна среди начинающих спортсменов. Поэтому я не мог ее не затронуть. Подробнее читайте в этой статье.

Являясь основной составляющей всех клеток и органических тканей, белки играют чрезвычайно важную роль в бесперебойном функционировании организма. Они активно участвуют в абсолютно всех жизненно важных процессах.

Даже наше мышление напрямую связано с этим высокомолекулярным органическим веществом. Я не говорю уже о метаболизме, сократимости, способности к росту, раздражимости и размножению.

Все эти процессы невыполнимы без присутствия белков.

Белки связывают воду и тем самым образуют в организме плотные, характерные для человеческого тела, коллоидные структуры.

Известный немецкий философ Фридрих Энгельс говорил, что жизнь является способом существования белков, которые постоянно взаимодействуют с окружающей их средой посредством непрерывного обмена веществ, и как только этот обмен прекращается, белок разлагается — заканчивается и сама жизнь.

Функции белков и виды аминокислот

Новые клетки не могут родиться без участия белка. Его основная задача — строительство. Он — строитель молодых клеток, без которых невозможно развитие растущего организма. Когда этот организм перестает расти и достигает зрелого возраста, клетки, которые свое уже отжили, нуждаются в регенерации, проходящей только при участии белка.

Для этого процесса его количество должно быть пропорционально изнашиваемости тканей. Поэтому людям, ведущим спортивную жизнь, связанную с мышечными нагрузками (например занятия стрит воркаутом), необходимо употреблять больше белка. Чем выше нагрузка на мышцы, тем больше их организм нуждается в регенерации и, соответственно, в белковой пищи.

Роль специфических белков

В организме надо поддерживать постоянный баланс специфических белков.

Из них состоят гормоны, разные антитела, ферменты и многие другие образования, принимающие непосредственное участие в важнейших для нормальной жизнедеятельности биохимических процессах.

Функции, которые выполняют эти белки, являются очень тонкими и сложными. Мы на постоянном уровне должны поддерживать их количество и состав в организме.

Белок — это сложный биополимер, содержащий азот. Его мономерами являются α-аминокислоты. Белок, в зависимости от своего вида, состоит из различных аминокислот. Именно по аминокислотному составу судят о биологической ценности белка. Молекулярная масса белков: 6000-1000000 и более.

Аминокислоты в белках

Что такое аминокислоты? Это органические соединения, которые состоят из двух функциональных групп:

  • карбоксильная (-COOH-) — группа, определяющая кислотные свойства молекул;
  • аминогруппа (-NH2-) — группа, придающая молекулам основные свойства.

Природных аминокислот существует очень и очень много. В белках продуктов питания их содержится всего 20.

Природных аминокислот существует очень и очень много. В белках продуктов питания их содержится всего 20:

аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин (гликокол), глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин, цистин.

Незаменимыми аминокислотами являются 8 из 20 выше перечисленных. Это валин, изолейцин, лизин, лейцин, треонин, триптофан, фенилаланин, метионин. Незаменимыми они называются потому, что их мы можем получить только с пищей. Такие аминокислоты не синтезируются в нашем организме. У детей до одного года незаменимой аминокислотой является также гистидин.

Если организм страдает недостатком одной из незаменимых аминокислот или нарушением сбалансированности их состава, то в организме начинаются сбои. Нарушается синтез белка и могут возникать различные патологии.

Какие есть виды белков?

Все имеющиеся в продуктах питания белки, разделяются на простые и сложные. Простые белки еще называют протеинами, а сложные — протеидами.

Отличаются они тем, что простые состоят только лишь из полипептидных цепей, а сложные, кроме молекулы белка, содержат еще и простетическую группу — небелковую часть.

Если говорить простым языком, то протеины — это чистый белок, а протеиды — не чистый белок.

Также белки делятся и по пространственной структуре на глобулярные и фибрилярные. У молекул глобулярных белков форма сферическая или элипсоидная, а у молекул фибрилярных белков – нитевидная.

Простые глобулярные белки: альбумины и глобулины, глютелины и проламины.

В состав молока, сыворотки, яичного белка входят альбумины и глобулины. В свою очередь, глютелины и проламины — это растительные белки, содержащиеся в семенах злаков. Они образуют основную массу клейковины. Растительные белки бедны на лизин, лейцин, метионин, треонин и триптофан. Зато они богаты на глутаминовую кислоту.

Опорная функция в организме выполняется структурными белками (протеноидами). Они относятся к фибрилярным белкам животного происхождения.

Также они устойчивы к перевариванию пищеварительными ферментами и вообще не растворяются в воде. К протеноидам относятся кератины (в них содержится много цистина), коллаген и эластин.

В двух последних содержится мало серосодержащих аминокислот. Кроме этого, коллаген богат оксипролином и оксилизином, не содержит триптофан.

Коллаген становится растворимым в воде и превращается в желатин (глютин) в процессе длительного кипячения. В виде желатина его используют для приготовления многих кулинарных блюд.

К сложным белкам относят глико- , липо- , металло- , нуклео- , хромо- и фосфопротеиды.

  • Пластическая функция — обеспечивают организм пластическим материалом. Белок — это строительный материал для клеток, основной компонент абсолютно всех ферментов и большинства гормонов.
  • Каталитическая функция – выступают ускорителями всех биохимических процессов.
  • Гормональная функция — являются составной частью большинства гормонов.
  • Функция специфичности — обеспечивается как индивидуальная, так и видовая специфичность, которая положена в основу проявления как иммунитета, так и аллергии.
  • Транспортная функция — белок участвует в транспортировке кровью кислорода, некоторых витаминов, минералов, углеводов, липидов, гормонов и других веществ.

Белок мы можем получить лишь вместе с пищей. Его резервных запасов организм не имеет. Это незаменимый компонент рациона. Вот только не следует сильно увлекаться белковой едой, так как это может привести к отравлению организма и активному размножению свободных радикалов.

Белки и азотный баланс

В здоровом организме постоянно поддерживается азотный баланс. Так называемое состояние азотного равновесия. Это означает, что количество поступающего в организм вместе с пищей азота, должно быть равно количеству выводимого из организма азота вместе с мочой, калом, потом, шелушением кожи, ногтями, волосами.

Есть понятия позитивного азотного баланса (количество выводимого азота меньше, чем прибывающего) и негативного азотного баланса (количество выводимого азота больше, чем прибывающего). Позитивный азотный баланс, как правило, наблюдается у выздоравливающих после тяжелых заболеваний и детишек. Это связано с их процессом постоянного роста детей. Кроме этого, такой баланс имеет место.

Если процессы катаболизма белка преобладают над процессами синтеза (голодание, рвота, безбелковая диета, анорексия), или происходит адсорбция белков в системе пищеварения, или наблюдается процесс распада белков из-за тяжелых заболеваний, то тут имеет место негативный азотный баланс.

Дефицит и переизбыток белков

Белки, попадая вместе с едой в организм, окисляются и снабжают организм энергией.

16,7 кДж энергии (4 ккал) выделяется при окислении всего лишь 1 г белка.

Во время голодания, резко увеличивается потребление организмом белка, как источника энергии.

Белки, попадая вместе с пищей в желудок, расщепляются на аминокислоты. Далее эти аминокислоты всасываются слизистой кишечника и поступают прямиком в печень. А оттуда аминокислоты направляются во все остальные органы и соединительные ткани с целью синтеза белков человеческого организма.

Белковая недостаточность

Если в пище ежедневного рациона питания содержится недостаточное количество белка — его дефицит, то это скорее всего приведет к белковой недостаточности. Легкая белковая недостаточность может возникнуть при нарушении сбалансированного питания, при ряде заболеваний, приводящих к нарушению усвоения белков, усилению катаболизма и другим нарушениям метаболизма белков и аминокислот.

Переизбыток белков

Кроме дефицита, бывает и переизбыток белков в организме. В этом случае пищеварительная и выделительная системы претерпевают сильные нагрузки, что приводит к образованию продуктов гниения в пищеварительном канале. А это вызывает интоксикацию и отравление всего организма.

Вот такие вот функции белков в организме. Вывод можно сделать только один. Надо вести правильное рациональное питание.

Источник: https://vedizozh.ru/funkcii-belkov-v-organizme-cheloveka/

Строение и функции белков

Белки и их функции, свойства в организме

Определение 1

Белки – сложные органические соединения (биополимеры), в состав молекул которых входят углерод, водород, кислород и азот (иногда серы). Их мономеры – аминокислоты.

Белки играют первостепенное значение в жизни всех организмов. Они характеризуются неисчерпаемым разнообразием, которое одновременно очень специфично.

Замечание 1

Белки и нуклеиновые кислоты являются материальной основой всего богатства организмов окружающей среды. Их доля составляет 50 – 80% сухой массы клетки.

Молекулы белков похожи на длинные цепи, состоящие из 50 – 1500 остатков аминокислот, соединённых крепкой ковалентной азотно-углеродной (пептидной) связью. В результате образуется первичная структура белка – полипептидная цепь.

Замечание 2

Молекула белка – это полипептид, молекулярная масса которого составляет от 5 тыс. до 150 тыс. Бывает и больше.

Простые белки состоят лишь из аминокислот, а сложные белки, кроме аминокислот, могут содержать нуклеиновые кислоты (нуклеопротеиды), липиды (липопротеиды), углеводы (гликопротеиды), окрашенные химические соединения (хромопротеиды) и т.п.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Все свойства клетки (химические, морфологические, функциональные) зависят от специфических белков, содержащихся в ней.

Замечание 3

Именно набор аминокислот, их количество и последовательность расположения в полипептидной цепи и определяет специфичность белка.

Замена лишь одной аминокислоты в составе белковой молекулы или изменение последовательности расположения аминокислот может привести к изменению функций белка.

Этим и объясняется большое разнообразие в строении белковой молекулы первичной структуры.

Потому не удивительно, что живой организм, чтобы иметь возможность выполнять свои функции, использует особенный виды белков и его возможности в этом отношении неограниченные.

Пространственное расположение полипептидных цепей также определяет свойства белков. В живой клетке полипептидные цепи скрученные или согнутые, имеют вторичную или третичную структуру.

Вторичная структура представлена спирально закрученной белковой цепочкой. Витки спирали удерживаются благодаря водородным связям, образующимся между расположенными на соседних витках СО – и NH – группами.

В результате дальнейшего закручивания спирали возникает специфическая конфигурация каждого белка – третичная структура. Образуется она благодаря связям между белковыми радикалами аминокислотных остатков:

  • ковалентным дисульфидным (S – S-связям) между остатками цистеина,
  • водородным,
  • ионными.
  • гидрофобным взаимодействиям.

В количественном соотношении наиболее важными являются гидрофобные взаимодействия, вызванные тем, что неполярные боковые цепи аминокислот стремятся объединиться друг с другом, не смешиваясь с водной средой. Белок при этом свёртывается так, чтобы его гидрофобные боковые цепи были спрятаны внутри молекулы, то есть защищены от контакта с водой, а наружу, наоборот, выставлены боковые гидрофильные цепи.

Для каждого белка специфичны количество молекуламинокислот с гидрофобными радикалами и количество молекул цистеина и характер их взаимного расположения в полипептидной цепи.

Взаимное расположение групп атомов, обходимое для проявления активности белка как катализатора, его гормональных функций и др. обеспечивается сохранением определённой формы молекулы. Потому стойкость макромолекул – не случайное свойство, а один из важнейших способовстабилизации организма.

Биологическая активность белка может проявлятся лишь когда он имеет третичную структуру, потому при замене в полипептидной цепи даже одной аминокислоты могут возникнуть изменения в конфигурации белка, а его биологическая активность снизится или же исчезнет совсем.

Иногда две, три, и больше белковых молекул с третичной структурой могут объединиться в единый комплекс. Подобные образования являются четвертичной структурой белка.

Пример 1

Примером такого сложного белка является гемоглобин, который состоит из четырёх субединиц и небелковой части – гема. Он способен выполнять свои функции только в такой форме.

В четвертичной структуре белковые субединицы не связаны химически, однако вся структура достаточно крепкая благодаря действию слабых межмолекулярных сил.

Под влиянием разнообразных физических и химических факторов (обработка щелочами, кислотами, спиртом, ацетоном, влияние высоких температур и давления и пр.) третичная и четвертичная структуры белка изменяются, потому что разрываются водородные и ионные связи.

Определение 2

Денатурация – нарушение естественной (нативной) структуры белка.

При денатурации уменьшается растворимость белков, изменяется форма и размеры молекул, теряется ферментативная активность и т.п. Процесс денатурации оборотный, то есть возвращение нормальных условий сопровождается непроизвольным оновлением естественной (природной) структуры белка. Этот процесс называют ренатурацией.

Замечание 4

Все особенности строения и функционирования белковой макромолекулы зависят от его первичной структуры.

Функции белков в клетке

  • Строительная (пластическая) функция белковых молекул является одной из важнейших.Они являются составным компонентом клеточных мембран и органел. Стенки кровеносных сосудов, сухожилия, хрящи высших животных также состоят в основном из белка.

  • Двигательная функция обеспечивается особенными сократительными белками, благодаря которым осуществляются движения жгутиков и ресничек, перемещение хромосом во время деления клеток, сокращение мускулатуры, движения органов растений и т.п., пространственные изменения положения различных структур организма.

  • Транспортная функция белков обеспечивается их способностью связывать и переносить с течением крови химические соединения.

Пример 2

Белок крови гемоглобин переносит кислород из лёгких в клетки других органов и тканей (аналогичную функцию в мышцах выполняет миоглобин).

Белки сыворотки крови переносят липиды и жирные кислоты, различные биологически активные вещества.

Молекулы белков, входящих в состав плазматической мембраны, берут участие в транспорте веществ как в клетку, так и из неё.

Белки выполняют и защитную функцию. Как ответ на проникновение внутрь чужеродных веществ (антигенов – белков или высокомолекулярных полисахаридов бактерий, вирусов) в клетке вырабатываются особенные белки – иммуноглобулины (антитела), которые нейтрализуют чужеродные вещества и осуществляют иммунологичную защиту организма.

Благодаря функционированию иммунной системы организма обеспечивается распознавание антигенов антигенным детерминантам (характерным участкам их молекул). Благодаря этому специфически связываются и обеззараживаются чужеродные вещества за.

Замечание 5

Внешнюю защитную функцию могут выполнять также и белки, токсические для других организмов ( белок яда змей).

Белкам свойственна также сигнальная функция. В поверхность клеточной мембранны встроены молекулы белков, которые в ответ на действия факторов внешней среды способны к изменению свей третичной структуры. Так происходит восприятие сигналов из внешней среды и передача команд в клетку.

Регуляторная функция свойственна белкам-гормонам, которые влияют на обмен веществ. Гормоны поддерживают постоянную концентрацию веществ в крови, учавствуют в росте размножении и других жизненно важных процессах.

Пример 3

Одним из наиболее известных гормонов является инсулин, понижающий содержание сахара в крови. В случае стойкой недостаточности инсулина содержание сахара в крови увеличивается и развивается сахарны диабет. Главными регуляторами биохимических процессов в организме могут быть и многочисленные белки-ферменты (каталитическая функция).

Белки являются и энергетическим материалом. При расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии, необходимой для большинства жизненно важных процессов в клетке.

Ферменти, их роль в клетке

Определение 3

Ферменты (энзимы) – это специфические белки, присутствующие во всех организмах и выполняющие функцию биологических катализаторов.

Химические реакции в живой клетке происходят при умеренной температуре нормальном давлении и в нейтральной среде.

При таких условиях течение реакций синтеза или распада веществ в клетке был быочень медленным, если бы не действие ферментов.

Ферменты ускоряют реакции за счёт снижения энергии активации не измененяя их общего результата, то есть при их наличии для придания молекулам, вступающим в реакцию, реакционной способности, необходимо значительно меньше энергии

Все процессы в живом организме прямо или косвенно происходят с участием ферментов.

Под действием ферментов составляющие компоненты пищи (белки, липиды, углеводы и др.) расщепляются до простейших соединений, а из них позже синтезируются новые, свойственные данному виду макромолекулы. Потому нарушение образования и активности ферментов часто становятся причиной тяжёлых заболеваний.

Ферментативный катализ подчиняется тем же законам, что и неферментативный катализ в химической промышленности, однако в отличие от последнего характеризируется чрезвычайно высокой степенью специфичности (фермент катализирует только одну реакцию или действует лишь на один тип связи). Этим обеспечивается тонкое регулирование всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и т. п.), происходящих в клетке и организме.

Пример 4

Фермент уреаза катализирует расщепление только одного вещества – мочевины, но не действует каталитически на структурно родственные соединения.

Для понятия механизма действия ферментов, которые имеют высокую специфичность, чрезвычайно важна теория активного центра.

Согласно с ней, в молекуле каждого фермента есть один или больше участков, в которых катализ происходит за счёт тесного (во многих местах) контакта между молекулами фермента и субстрата (специфического вещества), а функциональная группа (пример – ОН – группа аминокислоты серина), или же отдельная аминокислота, выступает активным центром.

Обычно для действия катализатора необходимо, чтобы объединились несколько аминокислотных остатков, расположенных в определённой последовательности (в среднем 3 – 12).

Активный центр также может формироваться благодаря связи ферментов с ионами металов, витаминами и другими соединениями небелковой природы – так называемыми коферментами, или кофакторами.

Химическое строение и форма активного центра такова, что с ним способны связывать лишь определённые субстраты благодаря их идеальному соответствию (взаимодополняемости, или комплементарности) друг другу.

Остальные аминокислотные остатки обеспечивают большой молекуле ферментп соответствующую глобулярную форму, необходимую для эффективной работы самого центра.

Кроме того, вокруг большой молекулы фермента возникает сильное электрическое поле. В таком поле становится возможной ориентация молекул субстрата и приобретение ими ассиметрической формы. В результате ослабевают химические связи и начальная затрата энергии на реакцию, которая катализируется, будет меньше, а значит, значительно увеличится её скорость.

Пример 5

Одна молекула фермента каталазы способна за 1 мин расщепить более 5 млн. молекул перекиси водорода, которая возникает во время окисления в организме различных соединений.

Активный центр некоторых ферментов в присутствии субстрата может изменять конфигурацию: для обеспечения наибольшей каталитической активности такой фермент специально ориентирует свои функциональные группы.

Молекулы субстрата, присоединяясь к ферменту, также в определённых пределах изменяют свою конфигурацию для увеличения реакционной способностит функциональных групп центра.

На заключительном этапе химической реакции комплекс фермента и субстрата распадается, образуются конечные продукты и свободный фермент. Активный центр при этом освобождается и способен снова принимать новые молекулы субстрата.

Скорость реакций с участием ферментов зависит от многих факторов: от концентрации фермента, от природы субстрата, от давления, температуры, кислотности среды, от наличия ингибиторов.

При температурах, близких к 0˚С, до минимума замедляется скорость биохимических реакций. Это свойство широко используют в различных отраслях, особенно в медицине и сельском хозяйстве.

Пример 6

Для консервации органы человека (почки, серце, селезёнка, печень) перед пересадкой больному подвергают охлаждению, чтобы понизить интенсивность биохимических реакций и тем самым продлить время жизни этих органов. При быстром замораживании пищевых продуктов предотвращается размножение микроорганизмов, а так же инактивируются их ферменты, потому они уже не способны вызывать разложение пищевых продуктов.

Источник: https://spravochnick.ru/biologiya/himiya_zhizni/stroenie_i_funkcii_belkov/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.